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Abstract A computer program CONDORR (CONstrain-
ed Dynamics of Rigid Residues) was developed for mo-
lecular dynamics simulations of large and/or constrained
molecular systems, particularly carbohydrates. CON-
DORR efficiently calculates molecular trajectories on the
basis of 2D or 3D potential energy maps, and can generate
such maps based on a simple force field. The simulations
involve three translational and three rotational degrees of
freedom for each rigid, asymmetrical residue in the
model. Total energy and angular momentum are con-
served when no stochastic or external forces are applied
to the model, if the time step is kept sufficiently short.
Application of Langevin dynamics allows longer time
steps, providing efficient exploration of conformational
space. The utility of CONDORR was demonstrated by
application to a constrained polysaccharide model and to
the calculation of residual dipolar couplings for a disac-
charide.

Keywords Molecular dynamics · Carbohydrate ·
Polysaccharide · NMR

Abbreviations Molecular dynamics: MD · Hard-sphere,
exo-anomeric calculations: SEA · Metropolis Monte
Carlo: MC · Xyloglucan endotransglucosylase: XET ·
Protein Data Bank: PDB · Principle axis system: PAS ·
b-Glucose archetype: BG · Hydroxymethyl
archetype: HM · Advanced Micro Devices: AMD ·
Central processing unit: CPU · Residual dipolar
coupling: RDC · Complex Carbohydrate Research
Center: CCRC

Introduction

Molecular dynamics (MD) calculations have been widely
used to generate models of conformational motion of
biomolecules, providing insight into the molecular pro-
cesses that give rise to their important chemical and
physical properties. In the most frequently employed
general approach, the trajectory of each atom in the
molecule is calculated based on its interactions with other
individual atoms. For systems containing many atoms,
this approach can become very computationally de-
manding as the number of atom-atom pairs, and hence the
number of interactions to evaluate, increases as n2. Thus,
it is often impractical to apply this approach to large
macromolecular systems such as polysaccharide aggre-
gates, which can have hundreds of thousands of atoms.

As an alternative, atoms can be combined to form
aggregates that are treated as single units. For example,
the so-called “hard-sphere exo-anomeric” (HSEA) ap-
proach [1] was one of the first methods that successfully
predicted the conformational properties of glycans. In this
method, all the atoms in a each glycosyl residue are
combined to form a rigid unit, and the geometric rela-
tionships between units are defined in terms of the gly-
cosidic torsional angles j and y and the bond angle t. The
conformations available to the glycan are defined in an
“angle space”, which is sampled by performing a Me-
tropolis Monte Carlo (MMC) simulation. [2] That is, the
torsional and bond angles are varied in small, random
steps, and the energy of the resulting trial conformation is
compared to that of the current conformation. If the en-
ergy decreases, the new conformation is accepted and the
process is continued. The conformation will also be ac-
cepted if the energy increases, but only if the probability
ratio (as defined by Boltzmann statistics) is less that a
random number between 0 and 1. If the trial conformation
is rejected, a new one is generated and tested. This ap-
proach does not produce a molecular trajectory; but rather
a statistically relevant ensemble of related conformations
referred to as a Markov chain. Application of MMC
simulations of this type to constrained molecular systems
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(such as cyclic polymers) can be problematic, as small
changes in the geometry of a glycosidic bond often cause
large changes in the Cartesian coordinates of distal re-
sidues, resulting in a high energy geometry that violates
the molecular constraint. This produces high rates of
conformation rejection, significantly slowing the progress
of the calculation.

Conformational analysis of constrained glycans will
undoubtedly improve our understanding of their biologi-
cal functions. For example, the cell walls surrounding
growing and developing plant cells consist predominantly
of polysaccharide networks held together by various co-
valent and non-covalent crosslinks. [3] These polysac-
charide networks impart tensile strength to the wall,
preventing the cell from bursting under osmotic stress.
Expansion of the polysaccharide networks and their in-
corporation of new material during cell growth involve
both spontaneous (self assembly) and enzyme-catalyzed
processes that are likely to be topologically complex. The
hemicellulosic polysaccharide xyloglucan binds sponta-
neously to the surface of cellulose microfibrils in the cell
wall, leading to the formation of a xyloglucan-cellulose
network, which is a major load-bearing structure in the
growing wall. In this network, rigid cellulose microfibrils
are crosslinked by xyloglucan tethers, which are broken
and reformed by an enzyme called xyloglucan endo-
transglucosylase (XET). [4] A comprehensive under-
standing of these molecular processes, including the me-
chanics of the xyloglucan-cellulose binding process and
the effects of conformation and tensile stress on the
suitability of xyloglucan tethers as XET substrates, will
depend on the ability to generate dynamic models of this
network. Thus, analysis of this and other biological sys-
tems would benefit by the development of alternative
computational methods to examine the dynamic proper-
ties of large conformationally constrained molecular as-
semblies.

Toward solving this problem, we suggest an alternative
approach to MD simulations, involving calculation of the
trajectories of individual rigid units within the system,
considering both translational and rotational motion of
each unit. Here we describe CONDORR (CONstrained
Dynamics of Rigid Residues), a computer program that
uses this approach to simulate the molecular dynamics of
large molecular systems. In the examples described here,
the rigid units are individual glycosidic residues of car-
bohydrate polymers, which were chosen because the cy-
clic nature of these residues imparts localized rigidity and
the energetic properties of the conformational space de-
fined by rotation around the (flexible) glycosidic bonds
has been studied previously. However, it is important to
note that the computational methods used by CONDORR
can be applied to other systems, such as polysaccharide or
protein aggregates, where the rigid units can be much
larger. The results described herein illustrate the appli-
cation of the basic approach to glycans using potential
energy maps based on simplified force fields, but it will
be possible to obtain more accurate results efficiently
with these methods upon development of better potential

energy or free energy maps. The CONDORR program
provides a platform that can be used to assess and utilize
such energy maps, and thereby facilitate their develop-
ment.

Materials and methods

The computer program CONDORR was written in C and imple-
mented under the Linux operating system. Atomic coordinates for
b-d-Glcp were generated starting with X-ray data [5] and per-
forming a full geometry optimization in vacuum at 298 K using the
semiempirical PM3 method with Gaussian 98 RevA.9. [6] Full
geometry optimization was then performed using Density Func-
tional Theory with B3LYP/6-311+G* at 298 K. Dihedral angles are
specified using a heavy-atom nomenclature in which, for example,
j is defined as O5–C1–O1–Cx and y is defined as C1–O1–Cx–Cx�1.

CONDORR treats each residue as a separate object, with a
defined mass and moment of inertia tensor, simulating the molec-
ular trajectories of these rigid objects with six degrees of freedom.
Residues are generated from archetypes (Fig. 1) defined using data
contained in a standard Protein Data Bank (PDB) file. Exchange-
able protons, which are inherently mobile, are not included in the
archetype definition. If a mobile group, such as the exocyclic hy-
droxymethyl group of a hexopyranosyl residue, is included in the
PDB file that specifies an archetype, its rotation will not be cal-
culated during the MD calculation. Alternatively, each mobile
group can be put into a separate PDB file and treated as a separate
residue that undergoes an independent, but constrained trajectory
(Fig. 1).

Covalent linkages between residues are defined by specifying a
“shared atom” that is included in the archetype definitions of both
residues. For example, the glycosidic link between two (1!4)-
linked residues is established by specifying that O1 of one residue
is identical to O4 of the other residue (Fig. 1). The two residues are
properly oriented based on bond geometry and the coordinates of
the centers of mass of the two residues are adjusted so as to su-
perimpose these two (nominally distinct) atoms. Subsequent
movement and/or rotation of the residues would cause shared atoms
to diverge, but their superposition is maintained by imposition of a
user-specified harmonic potential. Another (usually weaker) har-
monic potential maintains an appropriate distance between the two
atoms (e.g., C1 of Glcp residue 2 and C4 of Glcp residue 1 in
Fig. 1) that are directly attached to the shared atom (e.g., the gly-
cosidic oxygen). Together, these two potentials establish an inter-
residue linkage and impose a flexible constraint upon the bond
angle at the shared atom.

The harmonic potentials just described have no effect on rota-
tion about the C1–O1 or Ox–Cx bond, specified by the dihedral
angles j and y, respectively (Fig. 1). In actual molecules, j and y
rotations are constrained by various forces, including those due to
van der Waals interactions, electrostatic interactions, solvent ef-
fects, and the exo-anomeric effect. As indicated by the success of
hard-sphere exo-anomeric (HSEA) calculations in predicting the
overall features of neutral oligosaccharides [1], the dominant forces
governing glycosidic bond rotations stem from van der Waals in-
teractions and the exo-anomeric effect, which significantly limit the
conformational space available to the glycosidic linkage [7].
Therefore, an extremely simple force field, based entirely on van
der Waals interactions and torsional potentials, was implemented in
order to test the rigid-residue computational approach embodied in
CONDORR.

Forces and torques used by CONDORR when performing an
MD calculation are calculated as the negative gradient of the po-
tential energy with respect to a Cartesian coordinate or dihedral
angle, respectively. Any combination of the following four methods
is employed to calculate the contributions of glycosidic bond ge-
ometry to the potential energy. (1) Explicitly calculate the potential
due to van der Waals interactions of atoms in each residue with
atoms in its aglycon, in a manner similar to that of the HSEA
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approach. [1] This approach is computationally demanding, and is
suitable only for short trajectories of small molecules or for the
generation of potential energy maps (see below). (2) Express the
potential as a user-specified function f(j) and/or f(y) of one of the
dihedral angles for the linkage. (3) Recall the potential associated
with a particular dihedral geometry from a previously generated 2-
dimensional (2D) array (i.e., a [j, y] potential energy map). (4)
Recall the potential associated with a particular dihedral geometry
from a previously generated 3-dimensional (3D) array ( i.e., a [j, y,
w] map). One use of 3D potential energy maps is to facilitate the
calculation of trajectories of glycans comprised of residues with
mobile exocyclic groups.

In addition, the potential energy terms due to the pairwise in-
teraction of residues that are not directly linked to each other can be
applied globally (to all residue pairs) or selectively to residue pairs
specified in the input file. The potential energy of these interactions

is calculated either by using an all-atom approach (which, in this
case, is based solely on van der Waals potentials, but which could
be made more sophisticated) or by using a united-atom approach in
which each residue is treated as a single, idealized sphere. Of these
two methods, the all-atom approach is the more accurate, but is
much more computationally demanding.

The identity and coordinates of each atom in the PDB file are
used to calculate the mass and moment of inertia tensor of the
archetype, which are then used as a basis for calculating the posi-
tion and orientation of each residue at each time step of the sim-
ulation. The center of mass of each residue archetype (defined
above) is placed at the origin of the principle axis system (PAS)
defined by diagonalizing the moment of inertia matrix. The initial
location and orientation of each residue are calculated (relative to
the PAS atom coordinates of the archetypes) using geometric pa-
rameters specified in an input file. That is, the input file specifies
(for each residue) shared atoms, atoms used to define torsional
angles for the linkage, and atoms used to define bond angles, along
with a residue connection table and initial torsional and bond an-
gles. For each residue i, the orientation at time t is expressed as a
matrix Ri(t) that rotates the residue archetype from its PAS to the
MD coordinate system, in which the model is defined. Cartesian
coordinates of each atom of the residue are then established by
translating the center of mass of the rotated archetype to the resi-
due’s current position ri(t). It should be noted that specification of
the covalent interaction between mutually linked residues depends
on the atomic coordinates of only a few atoms.

Residue trajectories are calculated using a two-part velocity-
Verlet algorithm in which the position and translational velocity of
each residue are treated separately from the orientation and angular
velocity. That is:

ri t þ Dtð Þ ¼ ri tð Þ þ vi tð ÞDt þ ai tð ÞDt2

2

vi t þ Dt=2

� �
¼ vi tð Þ þ aiðtÞDt

2

ai t þ Dtð Þ ¼ Fi t þ Dtð Þ
mi

vi t þ Dtð Þ ¼ vi t þ Dt=2

� �
þ ai t þ Dtð ÞDt

2

where for each residue, vi(t) is the velocity, ai(t) is the acceleration,
Fi(t) is the force, and mi is the mass.

The incremental change (for the current time slice) in the ori-
entation of each residue is expressed as a “rotation vector”

mi tð Þ ¼ wi tð ÞDt þ ai tð ÞDt2

2

where wi(t) is the angular velocity and ai(t) is the angular accel-
eration. At each time step, �i(t), whose direction corresponds to an
axis of rotation and whose length corresponds to a rotation angle in
radians, is converted to a incremental rotation matrix DRi(t). The
overall rotation matrix Ri(t), which transforms archetypal atomic
coordinates of residue i to the MD coordinate system, is updated by
multiplication by DRi(t). These definitions allow the rotation matrix
and angular velocity for each residue to be updated using an al-
gorithm analogous to that used for updating translational parame-
ters.

mi tð Þ ¼ wi tð ÞDt þ ai tð ÞDt2

2

DRi tð Þ  miðtÞ
Ri t þ Dtð Þ ¼ DRi tð ÞRi tð Þ

wi t þ Dt=2

� �
¼ wi tð Þ þ ai tð ÞDt

2

ai t þ Dtð Þ ¼ Gi t þ Dtð Þ
Ii

wi t þ Dtð Þ ¼ wi t þ Dt=2

� �
þ ai t þ Dtð ÞDt

2

Fig. 1 Molecular models (bottom) are created by cloning rigid
residue archetypes (top) and joining them together. As defined here,
the archetypes AX, HM and BG respectively correspond to an a-d-
Xylp residue, a hydroxymethyl group, and a b-d-Glcp residue
lacking O6, H6a and H6b. Each archetype contains atoms (indi-
cated by boxes) that can be shared with other archetypes to form a
linked structure. For example, the glycosidic link between the two
d-Glcp residues is established by specifying that O1 of the nonre-
ducing b-d-Glcp (BG) residue (2) is identical to O4 of the reducing
Glcp (BG) residue (1). The coordinates of the two residues are
adjusted so as to superimpose these two (nominally distinct) atoms.
Flexible hydroxymethyl (HM) groups (3 and 4) are treated as
separate residues, and the torsional angles (normally indicated by
the symbol w) that define their geometric relationships to the
pyranosyl rings of the BG residues are specified as y3 and y4,
respectively. The torsional angles j3 and j4, defined solely to
maintain the orientation of the geminal H-atoms of the hydroxy-
methyl group, are not shown. (See text.) The illustrated trisaccha-
ride is thus specified as a collection of 5 residues which are rep-
resented by 3 archetypes. Models of the disaccharide cellobiose (b-
d-Glcp-(1!4)-d-Glcp) must include residues 1 and 2, but the hy-
droxymethyl groups (residues 3 and 4) can also be explicitly in-
cluded in this model
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where, for residue i, the vector Gi(t) is the torque, ai(t) is the an-
gular acceleration, and Ii is the moment of inertia. The above
equations idealize each residue as a sphere, for which the moment
of inertia can be expressed as a scalar quantity Ii rather than as a
tensor. CONDORR also allows the angular acceleration ai(t) and
the updated angular velocity wi(t+Dt) to be calculated by using the
diagonalized moment of inertia tensor of the residue archetype. In
this mode, which is more computationally demanding, wi(t) and
Gi(t) are multiplied by RT

i tð Þ, which rotates them to the PAS in
which the archetype of residue i is defined. Euler’s equations and
the diagonalized moment of inertia tensor for the archetype are then
used to calculate the residue’s angular acceleration ai,PAS(t) in this
principle axis system. Multiplication of ai,PAS(t) by Ri(t) generates
ai(t) in MD coordinates, which is then used to update wi(t) and
calculate �i(t).

CONDORR implements a Langevin dynamics [8] approach in
order to control the simulation temperature and explore the con-
formational space available to the model polymer more efficiently.
This includes calculating the effects of friction, as described by the
frictional coefficients gi,trans and gi,rot, which slow the motions of
each residue in proportion to its translational and rotational ve-
locity, respectively. The resulting loss of kinetic energy is balanced
by stochastic forces Fi,stochastic(t) and torques Gi,stochastic(t), which
contribute varying amounts of kinetic energy at each time step.
Thus, the total force Fi(t) and torque Gi(t) acting on each residue are
calculated as follows.

Fi tð Þ ¼ Fi;stochastic tð Þ þ Fi;molecular tð Þ � gi;transvi tð Þ
Gi tð Þ ¼ Gi;stochastic tð Þ þ Gi;molecular tð Þ � gi;rotwi tð Þ
where Fi,molecular(t) and Gi,molecular(t) are the force and torque
on residue i due to its interactions with other residues. The mag-
nitudes of the stochastic contributions Fi,stochastic(t) and Gi,stochastic(t)
are calculated according to the Fluctuation Dissipation Theorem
such that a constant temperature T is maintained [8]. That is,
Fi,stochastic(t) and Gi,stochastic(t) are chosen from normally distributed
collections of random (3-dimensional) vectors with zero average
and standard deviations s in each dimension of

strans ¼
2kBTgtrans

Dt

� �1=2

srot ¼
2kBTgrot

Dt

� �1=2

where kB is Boltzmann’s constant.
The trajectory of each residue is based on the total force Fi(t)

and torque Gi(t) to which it is subjected, including those due to
mutual interactions of residues (and atoms within residues, when
evaluated) and those introduced as stochastic elements of the
Langevin equation. As described above, residue-residue interac-
tions can be calculated by treating each residue as an ideal sphere,
ignoring the interaction of individual atoms within the residues, in
which case the force on each residue is simply added to Fi(t), and
no torque is calculated. Conversely, the force resulting from the
interaction of an atom in one residue with an atom in another
residue causes both atoms to accelerate, which can result in both
linear and angular acceleration of the interacting residues. This is
the case, for example, when a pair of “shared” atoms that defines a
glycosidic linkage diverge in space. As described in the Appendix,
the force Fi,k(t) acting on atom k of residue i is simply added to the
total force Fi(t) on the residue. In addition, the torque Gi,k(t) acting
on residue i due solely to Fi,k(t) is very simply calculated as the
vector product

Gi;k tð Þ ¼ ri;k � Fi;k tð Þ
where ri,k is the vector from the center of gravity of residue i to
atom k of residue i. The vectors Fi,k(t) and Gi,k(t) are evaluated at
each time step and added to the total force Fi(t) and torque Gi(t)
vectors for the residue. The location, acceleration, velocity, orien-
tation, angular acceleration, and angular velocity of each residue is

then updated using the velocity-Verlet algorithm described above.
As described in the Appendix, these simple equations conserve the
total energy, linear momentum and angular momentum of the
system.

For residue–residue interactions in which the potential energy is
expressed solely as a function of a torsional angle j, the contri-
bution Gi;f tð Þ to the torque is calculated by defining a fictitious
atom in one of the residues, a fictitious force Ff ;f tð Þ, and a distance
vector s specifying the separation of the fictitious atom from a
specified atom in the other residue, as described in the Appendix.
The force Ff ;f tð Þ is collinear with s and the derivative of the po-
tential energy with respect to s is related to the torsional potential
gradient.

Ff ;f
�� �� ¼ �dU

ds
¼ �dU

df
df
ds

Defining this fictitious force allows the torsional potential
gradient to be evaluated in a way analogous to that described above
for forces between individual atoms in the model. That is, the total
force vector Fi(t) for the residue is incremented by the fictitious
force Ff ;fðtÞ and the total torque vector Gi(t) for the residue is
incremented by Gi;f tð Þ ¼ ri;f � Fi;f tð Þ, where ri,f is the vector from
the center of gravity of the residue to the fictitious atom. The (equal
and opposite) force on the (real) atom in the other residue is treated
just like any other force on the atom, leading to translational and
rotational acceleration fothe residue. This approach conserves the
total energy, angular momentum, and linear momentum of the
system.

The molecular geometry of CONDORR models is calculated on
the basis of information contained in several input files (Table 1).
The archetype section of the main CONDORR input file specifies a
PDB file for each residue type, along with other information that
allows CONDORR to generate archetypal residues. For each ar-
chetype, the atoms involved in the formation of glycosidic bonds
are also designated, including “shared” atoms and atoms that define
glycosidic torsional and bond angles. In order to provide more
flexibility in specifying which atoms to exclude when van der
Waals forces are calculated, atoms that are one or two bonds away
from each shared atom (i.e., alpha and beta atoms, respectively) are
also specified. More than one residue can be constructed for each
archetype defined in this way. For example, only one archetype
would be listed in this section when simulating the geometry of a
homopolymer such as poly-a-d-Glcp (amylose).

The sequence section of the input file (Table 1) contains in-
formation regarding the order and linkage of archetypes in the
model, which constitutes a connection table. The initial torsional
and glycosidic bond angles are also included in this section, along
with specification of force parameters that are applied selectively to
individual residues in the sequence. Together, the archetype and
sequence sections of the input file provide all of the information
required to generate the initial geometry of the model. If the key-
word ‘pdbStart’ is included in the general parameter section of the
input file (Table 1), a PDB file specifying the initial geometry of
the model is generated.

CONDORR uses relatively few potential energy parameters
when calculating molecular trajectories. These parameters, speci-
fied in the force field section of the main input file (Table 1), in-
clude force constants for the harmonic potentials that maintain
superposition of shared atoms and appropriate bond angles about
the shared atoms. Torsional potential energy functions are also
specified in this section, along with any globally applied van der
Waals parameters and the location of files containing 2D and 3D
conformational potential maps, which can be used for the rapid
calculation of molecular trajectories. The 2D maps describe the
potential associated with rotations, usually expressed as torsional
angles j and y, about the two chemical bonds that connect a pair of
residues (Fig. 1). For glycosidic linkages, the torsional angles are
indexed by reference to the glycosyl residue (i.e., ji and yi specify
the geometry of the linkage between residue i and its aglycon.)
CONDORR supports the creation of 2D and 3D maps by executing
grid searches that use van der Waals parameters, their global or
selective application to residue-residue interactions, and torsional
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potential functions, as specified in the input file. More accurate 2D
and 3D maps could be generated using a wide range of techniques,
including quantum-mechanical calculations and more sophisticated
all-atom calculations.

CONDORR provides considerable flexibility in defining re-
sidues and their linkages. That is, a CONDORR residue can en-
compass a collection of polymers, a group of sugar residues within
a single polymer, an individual sugar residue, or a small molecular
fragment, such as the hydroxymethyl group. Therefore, the tor-
sional angles j and y that connect “residues” can have non-stan-
dard meanings. For example, two archetypes (Fig. 1) can be used to
define a glucopyranosyl residue with a rotatable hydroxymethyl
group. The two archetypes must first be prepared by selecting ap-

propriate atoms from a “complete” glucoyranosyl residue, in which
the exchangeable protons have been removed. The first archetype
(BG, Fig. 1) includes all atoms of the glucosyl residue except H6a,
H6b, and O6. Included in the BG archetype definition is specifi-
cation of C6BG as a shared atom. The second archetype (HM) in-
cludes the three atoms that were omitted from the definition of the
BG archetype (renamed H1aHM, H1bHM, and O1HM), along with a
“shared” carbon atom (C1HM) that is identified with C6BG. Su-
perposition of the two shared atoms (C6BG and C1HM) and estab-
lishment of the appropriate distance between C5BG and O1HM
places the two “residues” in the proper relative position and fixes
the bond angle (C5BG–C1HM–O1HM). This geometry is maintained
during the simulation by the imposition of harmonic potentials, as

Table 1 Partial list of CONDORR input keywords and parameters

Keyword Arguments Effect

MD|noMDa none Toggle calculation of MD trajectory
langevina none If present, use Langevin dynamics
totalTimea time (ps) Set duration of MD simulation
timeStepa time step (ps) Set time step
snapshota frequency Set number of steps per data shapshot
tempa temperature (K) Set MD temperature
isotropic|anisotropica none Set moment of inertia mode
pdbStarta none If present, create pdb file of starting conformation
pdbMoviea none If present, create a pdb file for each snapshot
globalContacta cutoff (�) If present, calculate interaction potential of all residue pairs using

united atom, spherical approximation
globalVDWa cutoff (�) If present, calculate interaction potential of all residue pairs using

each atom in the residues
2Dgrida linkage, pdbGrid, steps If present, calculate 2D potential map for the specified linkage and

granularity. If pdbGrid is 1, create a pdb file for each map vertex.
3Dgrida linkage1, linkage2, steps If present, calculate 3D potential map for the specified linkages and

granularity.
xWallsa limit If present, sets a potential barrier at x=€limit.
restarta restart file Restart MD using coordinates and orientations from restart file
archetypeDefinitionsb archetype count Start archetype section
archetypeb index Start definition of an archetype
nameb archeype name Set archetype name
pdbFileb pdb file, atoms Set atomic coordinates for archetype, using specified number of

atoms from pdb file
linkersb linker count Set number of linkers for the archetype
linkerb index, atom, atom, atom Start definition of an archetype linker
alphaAtomsb linker index, atom count, atom

indices
Define alpha atoms for the linker

betaAtomsb linker index, atom count, atom
indices

Define beta atoms for the linker

k1c k1 Set force constant for superposition of shared atoms
k2c k2 Set force constant for linkage bond angle
k3c k3 Set force constant for xWall interaction
2DPotentialMapsc count Start 2D map definitions
2DMapc index, map file Define a 2D map

3DPotentialMapsc count Start 3D map definitions
3DMapc index, map file Define a 3D map

torsionFunctionsc count Start torsional potential function definitions
functionc index, count, [amplitude,

frequency, phase, power] ...
Define a torsional potential function with specified number of terms,
each with a specified amplitude, frequency, phase, and power

sequenced count Start sequence definition for a specified number of residuese

harmonicd residue1, atom1, residue2, atom2,
force constant, equilibrium
distance

Set up a harmonic potential between two atoms

3DmapApplicationsd count Start specification of linkages to which 3D maps will be applied
apply3Dmapd map index, linkage 1, linkage 2 Set application of 3D map to two interacting linkages

The input file is divided into four sections: generala; archetypeb; force fieldc; sequenced.
e The sequence parameters for each residue are specified in lines that follow the “sequence” keyword. Each of these lines includes the
following parameters for a specific residue: [index, archetype-ID, aglycon-index, aglycon-link-index, tau, phi, psi, 2D-map-index, phi-
torsional-function-index, psi-torsional-function-index, explicit-vdw-flag, traslation-freeze-flag, rotation-freeze-flag]. For the last six pa-
rameters, which specify how the force field will be applied to the linkage of the residue to its aglycon, a value of zero specifies no force
will be applied.
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described above. However, careful examination of this construction
reveals that it does not constrain the orientation of the methylene
protons (H1aHM and H1bHM). Therefore, a dummy atom, corre-
sponding to C5 of the BG archetype, is also included in the defi-
nition of the HM archetype. To maintain internal consistency
within CONDORR, the torsional angle j for the linkage between
HM and BG is actually an “improper” torsion, defined as [dum-
my]HM–O1HM–C1HM–C5BG. Constraining j to a value of zero (by
using a torsional potential function) maintains superposition of the
dummy atom with C5BG, maintaining the proper orientation of
methylene protons. The torsional angle y for this linkage is defined
as O1HM–C1HM–C5BG–O5BG, which, in the nomenclature com-
monly used for glycosyl residues, is referred to as w.

The potential energy associated with the geometry of a glyco-
sidic linkage (or other molecular connection) often depends on
more than two torsional angles. This is most obvious for the (1!6)-
linkage to a hexopyranosyl aglycon (Fig. 1), whose potential energy
surface is a function of three independent variables (i.e., the three
torsional angles that are usually called j, y, and w). As just de-
scribed, CONDORR allows rotation about the C5-C6 bond by
separating the hexopyranosyl residue into two CONDORR re-
sidues. Thus, a glycosidic (1!6)-linkage corresponds to two sep-
arate CONDORR linkages (Fig. 1). Defining the aglyconic glucose
as residue i, the exocyclic hydroxymethyl group as residue i+1, and
the glycosyl residue attached to O6 as residue i+2 (Fig. 1, bottom
panel), the three independent variables are ji+2, yi+2, and yi+1,
respectively. Accordingly, CONDORR can calculate 3D potential
maps based on systematic variation of three torsional angles, j and
y of one residue and y of a second residue. (More sophisticated 3D
maps can be generated using other methods.) As described above,
ji+1, which just determines the orientation of the methylene pro-
tons, should be constrained to a value near zero, and is not con-
sidered when generating the map.

Although two residues that are consecutive in the residue se-
quence of the model are chosen to specify the independent vari-
ables of the 3D potential energy map for a (1!6)-linkage, 3D
potential maps can also be used to describe the energetics associ-
ated with relative geometry variation for any two residues in the
model. For example, the potential energy surface (j, y map) de-
scribing various glycosidic bond conformations of cellobiose (b-d-
Glcp-(1!4)-d-Glcp, Fig. 1) depends significantly on the orienta-
tion of the hydroxymethyl group of the aglycon. [7] CONDORR
can efficiently account for this by utilizing a 3D potential map in
which the independent variables are j2 and y2 for the linkage
connecting the two Glcp residues and y3 for the linkage connecting
the hydroxymethyl group to the reducing Glcp residue (see Fig. 1).
For each component @U

@fi
; @U

@yi
; or @U

@yj
of the gradient of this

potential surface, a torque is applied to the two mutually linked
residues whose relative geometry is described by the corresponding
torsional angle. That is to say, torques associated with two separate,
interacting linkages can be generated from a single 3D map, in-
creasing the efficiency of the calculation.

Results

Application of CONDORR to simple systems

CONDORR was tested to determine whether it generates
molecular ensembles that are consistent with the force
field defined in the input file. As described in the Methods
section, the current version of CONDORR implements
simple force fields consisting of potential energy terms
corresponding to van der Waals interactions and torsional
angle functions, and can generate and utilize potentials
recalled from 2D or 3D potential maps. It can also utilize
more sophisticated potential maps generated by external
methods, such as quantum mechanical calculations or grid

searches done by other molecular dynamics or molecular
mechanics software. CONDORR was used to generate 2D
and 3D maps based on torsional functions taken from the
literature and van der Waals interactions. In this case, the
exo-anomeric effect was approximated using the torsional
functions of Tvaroska et al. [7] It has been shown that
when these functions and Lennard-Jones 6–12 van der
Waals potentials are applied to a system of rigid residues,
the energetic barriers to rotation of the glycosidic bond
are overestimated, and the model is too inflexibile. [7]
Therefore, van der Waals potentials were calculated using
a function that reproduces the attractive portion of the
Lennard-Jones function, but is less steep in the repulsive
portion. Initially, equations were derived to express forces
acting on a residue when each of its constituent atoms is
constrained by a radially symmetric harmonic potential
about the its initially-defined location within the residue
archetype, and the interaction of atoms in different re-
sidues is described by a Lennard-Jones 6–12 function. In
this model, the “virtual movement” of atoms within each
archetype leads to a potential function with a softer re-
pulsive regime, decreasing the energetic barriers to gly-
cosidic bond rotation. However, the profiles of such soft
potential functions are very similar to van der Waals
functions with the standard form

Vi;j ¼ A
rm

min;i;j

rm
i;j

þ B
rn

min;i;j

rn
i;j

in which m<12, n<6, and rmin,i,j is the internuclear dis-
tance corresponding to minimum potential. (When m=12
and n=6, this function corresponds to a Lennard-Jones 6–
12 potential.) Soft (m<12) potentials described by this
equation are much easier to evaluate than the functions
that include a radially symmetric harmonic potential term.
The values of m and n are user-definable parameters
within CONDORR, allowing the hardness of the residue
surface to be adjusted. Typically, m was set to a value of
10.0 and n was set to 5.0.

A 2D (j,y) map (180�180 points, Fig. 2a) for the b-
(1!4)-linkage of cellobiose (b-d-Glcp-(1!4)-d-Glcp,
Fig. 1) was generated using an exoanomeric torsional
potential [7] for j in combination with modified van der
Waals potentials (m=10, n=5) for atom–atom interactions.
As illustrated in Fig. 1, the model used in this case in-
cluded two rigid units, i.e., b-d-Glcp residues (1 and 2),
which lack O6, H6a, and H6b. The specification of “alpha
atoms” (i.e., atoms that are directly attached to the shared
atoms) in the archetype definition was automatically in-
voked by CONDORR to suppress the calculation of 1–3
interactions across the glycosidic bond, which would
otherwise give rise to very high residue interaction en-
ergies and significantly degrade the reliability of the
calculation. In order to eliminate bias due to the fixed
orientation of the exocyclic hydroxymethyl groups, O6,
H6a and H6b were not included in the archetypes used in
the generation of this potential energy map (although
these were included when 3D potential energy maps were
generated; see below.) Conformational energy maps cal-
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culated in this manner are not highly accurate, as they
ignore, for example, electrostatic interactions, hydrogen
bonding, and solvent effects. However, they are useful in
that they direct sampling of conformational space in a
way that avoids physically inaccessible regions, providing
a basis for the extremely rapid evaluation of the confor-
mational energy surface, significantly speeding up mo-
lecular dynamics calculations. Furthermore, they provide
a convenient means of testing the ability of CONDORR to
generate trajectories that coincide with a specified force
field.

Two simulations (10 ps in 105 steps, 0.0001 ps/step,
Fig. 2) were performed for cellobiose, the first using ex-
plicit calculation of all interresidue van der Waals inter-
actions, and the second using the potential energies stored
in a 2D (j, y) map (Fig. 3a) generated by CONDORR
using the same force field. Free evolution of the molec-
ular conformation was allowed for both simulations (i.e.,
no stochastic Langevin forces were applied) and the total
energy, linear momentum, and angular momentum were
monitored. As shown in Fig. 2, the total energy was
conserved while the kinetic and potential energies fluc-
tuated. Linear and angular momentum were also con-
served (data not shown). However, some drift in the total
energy was observed (data not shown) when the time step
was increased to 0.001 ps. Similar results were obtained
regardless of whether isotropic moments of inertia or
anisotropic moment of inertia tensors were used to cal-
culate the angular acceleration of each residue. These
results demonstrate that, as derived analytically in the
Appendix, total energy, linear momentum, and angular
momentum are conserved by the CONDORR algorithm in
the limit as Dt!0.

Fig. 2a, b Conservation of energy by CONDORR. Unconstrained
MD simulations were performed without including stochastic
(Langevin) forces while using a explicit van der Waals potentials or
b the 2D potential energy map shown in Fig. 3A. The total energy
(kinetic plus potential) remained nearly constant over 105 steps in
each simulation

Fig. 3 a Two-dimensional potential energy surface of cellobiose
generated using a simple force field consisting of van der Waals
(m=10, n=5) and exoanomeric terms. Conformational families 1–4
are indicated by arrows. b Conformational sampling of a 10-ns MD
simulation of cellobiose performed using the 2D energy surface
shown in a. c Conformational sampling of a 10 ns MD simulation

of cellobiose performed explicitly using the van der Waals (m=10,
n=5) and exoanomeric parameters that were used to generate the
2D energy surface shown in a. d Potential surface as in a, but using
van der Waals parameters m=9, n=4.5. e Conformational sampling
as in c, but using the energy surface shown in d
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The 2D (j, y) potential energy map was also used as
the basis for an efficient Langevin dynamics simulation of
the conformational trajectory of cellobiose (Fig. 3b). This
10-ns calculation, comprised of 107 steps (1 fs per step)
and implementing an anisotropic moment of inertia tensor
for both residues, was completed in under 7 min on a
desktop computer equipped with a 1.1-GHz AMD Athlon
CPU. A much less efficient 10-ns calculation was also
performed, using the same parameters except explicitly
calculating the van der Waals potentials for each time step
(Fig. 3c). This calculation required 80 min when per-
formed on the same computer. The conformational en-
sembles generated by these two calculations both re-
flected the potential energy surface calculated by grid
searching, although they were not identical, due to biases
inherent in the different computational methods used.
That is, the trajectory calculated using explicit evaluation
of van der Waals potentials exhibited greater flexibility
than that calculated using the 2D potential map. The basis
for this difference is that the 2D map reflects torsional
potentials calculated on the basis of a fixed C1–O1–Cx
bond angle t and absolute superposition of the atoms
shared by the two residues. Thus, although the value of t
could vary and the shared atoms could diverge in both
simulations, such processes could lead to a decrease in the
potential energy of a specific conformation (as defined by
specific values of j and y) only when explicit van der
Waals interactions were calculated. That is, these pro-
cesses had no effect on the torsional potential values
taken from the 2D potential map, so simulations based on
this map exhibited greater transition energies than did the
simulation based on explicit evaluation of van der Waals
interactions. This tendency to overestimate transition
energies will occur when CONDORR uses torsional po-

tential maps that are generated directly from grid searches
in which the residue geometry is fixed. In order to mod-
erate this effect, another 2D potential map was prepared
with van der Waals parameters m=9 and n=4.5 (Fig. 3d),
and the simulation was repeated using potentials from this
map. The resulting trajectory (Fig. 3e) was very similar to
that obtained using explicit van derWaals potentials
(Fig. 3c). It is likely that one could obtain significantly
more accurate solutions by using a more sophisticated
force field to generate maps that explicitly take into ac-
count the flexibility of the residue.

A 3D (j, y, w) map (Fig. 4a–c) was also generated and
used as the basis for conformational trajectory calcula-
tions of cellobiose (b-d-Glcp-(1!4)-d-Glcp Fig. 1). As
illustrated in Fig. 1, the model used in this case included
three rigid units: two b-d-Glcp residues (1 and 2) lacking
O6, H6a, and H6b; and a hydroxymethyl group (3). The
map consists of 180 planes, each corresponding to a j, y
map (180�180 points), and reflects differences in the in-
teraction of the non-reducing Glcp residue (BG) with the
HM residue as it rotates about the C5–C6 bond (Fig. 4a–
c). The potential energy contributions due to interactions
between the HM residue and the reducing Glcp residue
were calculated using a torsional potential function ob-
tained by fitting the rotamer populations reported by
Kirshner, et al. [9] A 10 ns simulation (107 steps, 1 fs per
step) based on the resulting 3D map was completed in
approximately 11 min. The analogous calculation per-
formed with explicit calculation of van der Waals po-
tentials at each step required over 114 min to complete.
As described above for the application of 2D potential
maps, the results of these two calculations (Fig. 4d,e)
showed good agreement when the van der Waals potential
used for generating the 3D map was softer (m=9, n=4.5)

Fig. 4a–e a, b, c Planes in the 3D potential energy surface of
cellobiose generated using the same simple force field illustrated in
Fig. 2d (m=9, n=4.5), but including systematic variation of the
hydroxymethyl group of the reducing Glcp residue. The three
planes correspond to the gg (a), gt (b), and tg (c) conformations of

the hydroxymethyl group. Conformational sampling of a 10 ns MD
simulation of cellobiose performed using this 3D energy surface (d)
and explicit evaluation of van der Waals (m=10, n=5) and
exoanomeric parameters (e)
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than that used when the van der Walls potentials were
explicitly evaluated (m=10, n=5). Thus, CONDORR tra-
jectories obtained by using 2D or 3D potential energy
surfaces reflect the energetic properties of that surface,
and the harmonic potentials used to define the atomic
superposition and bond angles have relatively minor ef-
fects, providing that these harmonic potentials constrain
these geometric paramters to values close to their
equlibrium values.

Linkages in which three bonds are free to rotate

A 3D torsional potential map was also generated for the
flexible a-d-Xylp-(1!6)-b-d-Glcp linkage found in the
plant polysaccharide xyloglucan. As illustrated in Fig. 1,
the model used in this case included five residues: two b-
d-Glcp residues (1 and 2) lacking O6, H6a, and H6b; two
hydroxymethyl groups (3 and 4); and a terminal a-d-Xylp
residue (5). The potential at each grid point was calcu-
lated using a torsional potential function based on the
rotamer populations of Kirchner et al. [9] (see above), the
exoanomeric torsional potential of Tvaroska, et al., [7]
and modified (m=10, n=5, see above) van der Waals
potentials for the interaction of atoms in all three residues.
(As in the cellobiose model described above, van der
Waals interactions between the hydroxymethyl group and
the b-d-Glcp residue to which it belongs were not in-
cluded, as these are accounted for by the fitted torsional
potential for rotation around the C5–C6 bond.) The j, y
maps constituting different planes in the 3D potential map
correspond to different orientations of the xylosyl residue
and as such are significantly different, as expected (data
not shown).

This approach was used to calculate an MD simula-
tion for a branched tetrasaccharide b-d-Glcp-(1!4)-[a-d-
Xylp-(1!6)]-b-d-Glcp-(1!4)-b-d-Glcp. Two different
3D maps were generated for this calculation. The first
map, analogous to that (described above) used for the
simulation of cellobiose, describes the potential energy
surface for the b-d-Glcp-(1!4)-b-d-Glcp linkage, in-
cluding the effects due to variation in the orientation of
the hydroxymethyl group of the aglyconic Glcp residue.
The second is analogous to the 3D map (also described
above) for the a-d-Xylp-(1!6)-b-d-Glcp linkage, but
does not include the torsional function that relates po-
tential energy to rotation about the C5-C6 bond of the b-
d-Glcp residue. Omitting this function while generating
the second 3D map avoids redundant evaluation of the
torsional potential corresponding to rotation about the
C5–C6 bond of the central Glcp residue (which bears the
a-d-Xylp substituent at O6).

A molecular trajectory was calculated for the tetra-
saccharide based on these 3D maps just described. Ex-
plicit (m=10, n=5) van der Waals potentials were in-
cluded, but only for the interactions of the a-d-Xylp
residue with the two flanking b-d-Glcp residues. The
results suggest, as expected, that the presence of the a-d-
Xylp residue inhibits rotation about the C5-C6 bond of its

b-d-Glcp aglycon. However the results suggest that this
residue has only a modest effect on the conformations of
the adjacent b-d-Glcp-(1!4)-b-d-Glcp linkages. The Glc
residue bearing the Xyl residue remained in the initial
conformation (gg), so much longer simulations (perhaps
in the ms range) would be required to analyze this system
fully. Such extremely long simulations should be acces-
sible with CONDORR, and should provide meaningful
results if they employ potential energy maps that repres-
ent the potential energy surface more accurately. By using
3D potential energy maps, CONDORR can significantly
increase the speed of rigid-residue simulations of such
branched glycans, although satisfactory accuracy will
most likely require evaluation of a limited number of
specified (all atom) residue-residue interactions (e.g.,
between atoms of the Xylp residue with those of the two
flanking Glcp residues).

Cyclic oligosaccharides

As a first step in testing the applicability of CONDORR to
conformationally constrained, macrocyclic oligosaccha-
rides, models of a linear oligosaccharide containing eight
(1!4)-linked a-d-Glcp residues were generated. A short
(0.5-ns) MD calculation, performed at simulation tem-
perature of 50 K using a 3D potential map for a-D-Glcp-
(1!4)-a-d-Glcp linkages, correctly predicted that this
oligomer adopts an amylose V-helix conformation, [10]
allowing its reducing and non-reducing ends to approach
each other. A second 0.5-ns simulation, performed at the
same simulation temperature, included a weak harmonic
potential (0.1 kcal mol�1 ��1) between O1 of the reducing
residue and O4 of the non-reducing terminal residue.
Simplified, united atom residue-residue interaction po-
tentials were also included to insure that no two residues
would simultaneously occupy the same location in
Cartesian space. The final conformation of the resulting
trajectory was used as the starting point for a third (0.1 ns)
simulation in which the harmonic potential was increased
to 1.0 kcal mol–1 �–1. This low-temperature CONDORR
calculation resulted in a conformation that was readily
cyclized by specifying a glycosidic bond involving the
superposition of O1 of the reducing residue and O4 of the
non-reducing end residue. The conformation of the cy-
clized oligomer was optimized by a simulated annealing
calculation (0.5 ns, 5 K), which generated a highly sym-
metrical conformation, with a helical structure similar to
an amylose V-helix. [10] A 10-ns, 300-K simulation was
performed on the cyclized model solely on the basis of the
3D potential map without explicit evaluation of any res-
idue–residue interactions, as cyclization introduced a
constraint that precluded the steric interacion of residues
that were not mutually linked. The resulting trajectory
was characterized by limited motion of the glucosyl re-
sidues, whose glycosidic bonds remained in the initial
conformational energy wells, along with relatively rapid
rotation of the hydroxymethyl groups.
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Effects of external constraints, forces, and torques

Dynamic models of a linear oligosaccharide containing 20
b-(1!4)-linked d-Glcp residues were based on a 3D
potential energy map for cellobiose (m=10, n=5), in which
hydroxymethyl groups are treated as independent re-
sidues. Several 100 ns simulations were performed at a
temperature of 300 K. In the absence of any external
constraints, the simulations predicted such an oligomer
would adopt an extended but “twisted” conformation
(j=�70, y=120, corresponding to conformation 3,
Fig. 3a), which is distinct from that of crystalline cellu-
lose. However, glycosidic bonds in the oligomer occa-
sionally adopted a “folded” conformation (j=50, y=120,
corresponding to conformation 4, Fig. 3a). Folded con-
formations may allow the cellulosic backbone to fold
back upon itself under certain conditions [11].

A 100-ns simulation was performed in which an equal
but opposite torque (10 pN nm) was applied to each end
of the oligomer, which was otherwise free to move and
rotate. This torque was intended to produce the same ef-
fect as the flattening out of an initially twisted segment
(not explicitly included in the model) at the non-reducing
end of the polymer. Such a flattening corresponds to the
transition that is likely to occur when b-(1!4)-linked
glucans bind to the surface of a cellulose microfibril, [3]
which is a key process in the assembly of plant cell walls.
This transition would result in a net rotation of backbone
segments that are not in contact with the microfibril
surface, which, in the presence of rotational constrains at
the other end, could lead to “over-twisting” of the poly-
mer (i.e., additional conformational divergence from the
geometry of crystalline cellulose, which is characterized
by a two-fold screw axis of symmetry). The torque for
each terminal residue was defined such that its vector
representation remained parallel (or antiparrallel) to the
residue’s C1–C4 vector, ensuring that it continued to twist
rather than bend the backbone regardless of the instan-
taneous orientation of the residue. The resulting trajectory
was characterized by an increased population of glyco-
sidic bonds in the folded conformation (Fig. 3a, well 4)
and a decrease in the population of bonds in an “under-
twisted” conformation (Fig. 3a, well 2). This is not sur-
prising, as any “overtwisting” due to the torque corre-
sponds to an increase in the value of j and/or y, as would
a transition from the extended (but twisted) conformation
(Fig. 3a, well 3) to a folded conformation (Fig. 3a, well
4), via the relatively low energy barrier in the potential
energy surface that was used. The overall result suggests
that the formation of folded or partially folded structures
is compatible with the binding of a conformationally
constrained b-(1!4)-linked glucan to the surface of a
cellulose microfibril.

Additional simulations were performed in order to
examine mechanical processes that could lead to relax-
ation of an “overtwisted” b-(1!4)-glucan that is sub-
jected to tensile stress. In these simulations, the reducing
end residue was held at its initial Cartesian coordinates
and prevented from rotating while a force along a line

parallel to the initial helical axis of the backbone was
applied to the non-reducing end residue, which was also
prevented from rotating. These forces and constraints
were intended to reproduce the mechanical situation that
would occur if segments at each end of the overtwisted
polymer were bound to a different cellulose microfibril
and the two microfibrils were being forced apart. This
corresponds to frequently cited models of the expanding
plant cell wall, in which a network of cellulose mi-
crofibrils crosslinked by xyloglucan tethers [3] are sub-
jected to tensile stress of osmotic origin. (Xyloglucans
have a cellulosic backbone.) The initial conformation of
each glycosidic bond in the polymer was set to (j=�60�,
y=145�), corresponding to modest overtwising. Extension
of such an overtwisted backbone under tensile stress
would be accompanied by flattening of the backbone, as
the most extended structure corresponds to a flat back-
bone (j=�90�, y=90�) with a two-fold screw axis of
symmetry, as observed in crystalline cellulose I. How-
ever, under the rotational constraints imposed on the
terminal residues, transition to such a flat overall con-
formation would require a complete 360� rotation
(swiveling) about at least one glycosidic bond. Such
transitions are likely to be slow for a b-(1!4)-linked
glucan compared to analogous rotations of the sugar-
phosphate backbone of single-stranded DNA, in which
adjacent deoxyribosyl residues are connected via multiple
exocyclic atoms, leading to energetic barriers to rotation
that are considerably lower than those exhibited by gly-
cosidically linked pyranosyl residues. In fact, simulations
where mild tension (23 pN) was applied, the overtwisted
glucn did not elongate, consistent consistent with signif-
icant barriers to rotational relaxation. The end-to-end
distance in these simulations actually decreased due to
frequent occurrence of folded conformations (j=50�,
y=120�) in the glucan chain. Transitions of a glycosidic
linkage to a folded conformation were probably driven by
the overall energy decrease resulting from rotations that
occurred when several overtwisted segments of the
backbone relaxed to the most energetically preferred
conformation (j=�70�, y=120�). Under greater stress
(92 pN), the distance between residues at the ends of the
model glucan increased in jumps, consistent with an in-
frequent transition having a high free energy of activation.

Examination of the glucan trajectory under the con-
straints just described indicated that relaxation occurred
by a 360 degree rotation of the glycosidic bond nearest
the nonreducing end of the chain, which although con-
strained to prevent rotation, was free to move transla-
tionally. This suggested that motional constraints at the
other end (the reducing end) were too strict, so additional
50-ns simulations were performed in which both ends
were constrained to prevent rotation, but translational
motion was allowed at both ends. An equal and opposite
force (92 pN) was applied at each end to introduce tensile
stress without actually preventing the residues from
moving. This situation may more closely resemble the
mechanical situation for crosslinks in the xyloglucan–
cellulose network in plant cell walls, as the total contour

280



length of these tethers is estimated to be 30 nm (ap-
proximately 60 Glcp residues), [12] so central regions of
the tether are likely to have significant translational
freedom. Analysis of this simulation (Fig. 5) revealed that
relaxation occurred via a transition pathway sequentially
traversing conformations 4, 2, and 3 (Fig. 3a), with the
rate limiting step being the transition from well 4 to well
2. Rotations via the alternative pathway, via conformation
1 were not observed.

Calculation of residual dipolar couplings (RDCs)

Effective use of CONDORR is not limited to analysis of
large molecules. It is also useful when analyzing the
motion of small molecules that are confined to spaces
with very small dimensions. For example, liquid crystal-
line lipid bilayers (bicelles) are frequently used to align
biomolecules partially for NMR studies. [13] Under these
conditions, “residual dipolar couplings” (RDCs) between
pairs of nuclei in the aligned biomolecule become ob-
servable, providing information regarding its internal
molecular geometry. This approach is most readily ap-
plied to rigid or quasi-rigid molecules. However, flexible
molecules, such as glycans, tend to be difficult to analyze
by this approach. It can be especially difficult to apply
these techniques to small, highly flexible glycans for
which a unique molecular coordinate system cannot be
readily defined. One approach that can be used in this

situation is to treat each residue as a rigid entity and
compare experimentally measured RDCs for each residue
to ensemble average RDCs based on a molecular dy-
namics calculation. The net orientation of each residue
(and indeed the entire molecule) depends on molecular
conformation, which is constantly changing. Neverthe-
less, it is possible to calculate ensemble average RDCs by
simultaneous simulation of the conformation and align-
ment order of the molecule in solution. This can be ac-
complished by simulating parallel planar barriers that
confine the molecule, acting like the surface of an aligned
bicelle. Valid results require simulations that are long
enough to allow the molecule to sample a sufficient
number of orientations under the constraints of its con-
finement.

Very long simulations (2 ms, 100,000 snapshots) of b-
methyl-cellobioside in both constrained and uncon-
strained conditions were performed using a 3D potential
map to constrain glycosidic bond geometry. The effects of
an aligning medium were simulated by specifying two
walls, 12 � apart and parallel to the y,z plane of the MD
coordinate system. Atoms in the model molecule were
prevented from penetrating the wall by a harmonic po-
tential with a gradient parallel to the x-axis. The com-
putational cost of these potential energy terms was con-
sidered acceptable, as it increases in proportion to the
number of atoms n, rather than to n2, which is the case
when all interatomic van der Waals potentials are calcu-
lated. Inclusion of planar constraints led to a non-uniform
distribution of molecular orientations, which were ana-

Fig. 5 Simulation of a model b-(1!4)-glucan containing 20 re-
sidues under a tensile stress of 195 pN. The end-to-end distance
(bottom) and torsional angle j for the glycosidic linkage between
residues 16 and 17 of the sequence (top) undergo a simultaneous
transition at about 28 ns into the simulation. The conformations
adopted by the linkage are labeled according the conformational
families shown in Fig. 2. That is, the linkage, initially in confor-
mation 3, adopted conformation 4 for approximately 5 ns, and then
abruptly rotated to conformation 2 for a very brief time, immedi-
ately rotating into conformation 3. This 360� swivel allowed the
chain to relax and increase its end-to-end length by approximately
4.5 �

Fig. 6 Comparison of residual dipolar couplings (RDCs) calculated
using orientation vectors from CONDORR simulations to values
obtained by averaging RDCs obtained using the PALES program
[14] operating on 10,000 conformations taken from the same
simulation. Open squares indicate values taken from a CONDORR
simulation that was spatially constrained to simulate anisotropic
orientational ordering in a lipid-bicelle medium. Scaling effects,
due to the requirement for a small distance between the restraining
walls in the CONDORR simulation, result in a slope greater than
one. Solid triangles represent the unconstrained (isotropic) CON-
DORR simulation, leading to a plot with zero slope, as expected
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lyzed by explicit calculation of the Saupe order tensor
[13] for 20 pairs of nuclei in the model. As a result of the
way the vectors were defined, each RDC is proportional
to Szz, an element on the diagonal of the order tensor. As
the choice of the z-axis in the MD axis system is arbitrary,
RDCs were calculated using Szz values averaged over four
different orientations for the magnetic field vector (B0),
all orthogonal to the MD x-axis, but at angles of 0�, 45�,
90� and 135� with respect to the MD z-axis. For com-
parison, 10,000 molecular conformations taken from the
simulation were individually analyzed by the PALES
program, [14] which calculates RDCs for quasi rigid
molecules. After correcting for an arbitrary scaling factor,
the averages of RDCs obtained by PALES analysis were
in good agreement with RDCs obtained by direct analysis
of the spatially constrained CONDORR trajectory (diag-
onal line in Fig. 6). RDCs obtained by analysis of the
unconstrained simulations were close to zero (horizontal
line in Fig. 6), as expected for an isotropic net orientation.

Discussion

CONDORR provides a facile method for building mo-
lecular models using rigid residues, whose atomic coor-
dinates are taken from standard PDB files. The CON-
DORR program implements molecular dynamics simu-
lations using 6 degrees of freedom for each rigid, asym-
metrical residue. Total energy and angular momentum are
conserved when no stochastic or external forces are ap-
plied to the model, if the time step is kept sufficiently
short (less than 1 fs). Longer time steps can be used if a
Langevin dynamics approach is used to maintain the
model temperature. This method also allows conforma-
tional transitions to occur at a faster rate than if no sto-
chastic forces are applied.

The general methods implemented in CONDORR
were tested using glycosyl residues as rigid units. One
reason for choosing this system is that glycosyl residues
are relatively rigid and there has been some work in the
past examining the energetics of the conformational space
defined by rotation around the glycosidic bonds, which
are flexible. Although significant computational savings
are achieved by CONDORR, they are offset by a decrease
in the accuracy of the dynamics simulations it performs.
The force fields currently used by CONDORR (described
herein) are extremely simple, but provide a basis for
evaluating the overall properties of the algorithm in terms
of its ability to generate molecular dynamics trajectories
that reflect the 2D and 3D potential surfaces supplied to it.
It also provides a convenient platform for assessing and
applying more accurate energy surfaces, and as such will
be a useful tool that will facilitate the development of
such surfaces. Such improved parameterizations could
include electrostatics, solvent effects, and other factors
not considered in the simple force field currently used by
CONDORR. In addition, the CONDORR algorithm can
be used even with its present, highly simplified force field
to explore the complex energy surfaces of large, con-

strained systems in order to locate low-energy regions that
can be used as the starting points for more accurate, fully
atomistic dynamics calculations.

The premise underlying CONDORR is that groups of
atoms can be treated as a single entity whose position and
orientation can vary with time, while its internal geometry
remains constant. This is an extension of a frequently
used approach of “freezing” parts of a large molecular
structure while allowing other parts to undergo molecular
motion. This approach is often used, for example, to
model the interaction of a ligand with a larger structure,
such as a protein, allowing only those portions of the
protein that interact with the ligand to move, significantly
decreasing the computational cost of the simulation. The
disadvantage of this approach, as it is usually imple-
mented, is that the frozen portions of the structure cannot
move or rotate relative to the molecular dynamics frame
of reference, which can significantly affect how the fro-
zen parts interact with each other, with other parts of the
structure, or with other molecules in the simulation. For
example, two domains in a large structure that are con-
nected by a flexible hinge could be frozen to decrease the
computational costs, but doing so would not allow them
to move relative to each other. This limitation can be
overcome by the techniques that are implemented in
CONDORR (i.e., defining each domain as a rigid unit and
allow the two domains to move relative to the molecular
dynamics frame, to each other, and to other components
of the system). Thus, if interaction with the ligand de-
pends on the relative orientation and position of the two
domains, CONDORR methods would allow their relative
positions to change, thereby modulating the interaction
with the ligand. This could be done with a significant
decrease in computational expense, relative to fully
atomistic simulations of the system.

Although the methods implemented in CONDORR
provide a convenient means of simulating the motions of
quasi-rigid entities in such a hinged (or otherwise con-
strained) system, they do not preclude the application of
an atomistic approach to other components in the system.
That is, they could provide (at minimal computational
cost) appropriate environmental or geometric constraints
for the precise, high-level analysis of a small part of a
very large dynamic system. Such hybrid calculations
would still provide a significant saving in computational
costs. For example, a full atomistic analysis of two do-
mains, each with n atoms, would involve (2n)2 atom–
atom interactions. However, if each domain is considered
rigid, a “semi-atomistic” calculation of their interaction
(using a highly refined force field), in which energies are
calculated for every interaction between an atom in one
rigid domain and an atom in the other rigid domain,
would requires the evaluation of only n2 atom-atom in-
teractions, a four-fold saving in computational expense.
Further savings would result from parameterization (e.g.,
by using a potential energy map) for the interaction of the
two domains. CONDORR represents an initial step in the
direction of performing such calculations, which are
likely to be necessary when systems are simulated at a
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“meta-scale” (i.e., for large molecular assemblies that
contain millions of atoms.) Although such calculations
would lack a high degree of molecular detail, they could
nevertheless provide important information regarding the
complex interactions that are inherent in such large
structures. Hybrid calculations, in which the energetics of
only small portions of the system are evaluated with high
precision, could be extremely valuable in understanding
its overall dynamic properties. An example of such a
meta-scale calculation would be a simulation of the dy-
namic response of the cellulose-xyloglucan network to
osmotic stress in the primary walls of expanding plant
cells. It is not possible to simulate this fundamentally
important process using fully atomistic calculations, even
with the most powerful parallel processing systems that
are currently available.

Simulations using the basic CONDORR force field
suggest that cellulosic polysaccharides can form folded
structures under torsional stress and suggest specific
pathways by which these structures can relax under lon-
gitudinal stress. It should be noted that the simulations of
cellobiose and cello-oligomers reported by Hardy and
Sarko [11] also suggested that folded structures sponta-
neously occur in the backbone of b-(1!4)-linked glu-
cans, although these were attributed to transient residence
in energy well 1, rather than well 4, as described here.
Their all-atom calculations were based on more sophis-
ticated force fields, but were limited to small oligomers
that were not subjected to stress or externally applied
torques. A comprehensive analysis of the behavior of b-
(1!4)-linked glucans under torsional and tensile stress
will depend on much longer calculations performed using
more accurate force fields than those applied in this study.
The computational approach embodied in the CONDORR
algorithm will facilitate such simulations once more re-
alistic energy surfaces become available.

Very long simulations (2 ms) of cellobiose were also
performed on a standard PC running at 1.1 MHz. These
simulations made it possible to explicitly calculate a
Saupe order tensor (and the corresponding RDCs) [13] for
cellobiose in an anisotropic medium. This is computa-
tionally challenging, as the model compound must un-
dergo sufficient diffusional and rotational motion so as to
adequately sample orientational space in the presence of a
barrier (wall). The results obtained using CONDORR
agree well with those obtained by specific application of
the PALES [14] program to each of 104 conformers se-
lected from the trajectory, and averaging of the resulting
RDCs.

CONDORR’s strength lies in its ability to use various
combinations of 2D and 3D potential energy maps, along
with selective application of a limited number of judi-
ciously chosen van der Waals interactions to rapidly
evaluate the conformational potential of the model.
CONDORR will readily accommodate energy maps
generated by methods (e.g., quantum mechanical or mo-
lecular mechanics calculations) that allow conformational
relaxation of rigid units, thereby accounting for their in-
herent flexibility. It is likely that the calculation of such

maps will itself be computational expensive. For example,
one approach would be to perform a free energy calcu-
lation (based on MD or Monte Carlo methods) for each
vertex in the map. Initially, this kind of map would have
lower resolution (fewer data points) than those described
herein. In fact, CONDORR simulations calculated using
low resolution maps (15 degrees per point) are similar to
those obtained with high resolution maps (4 degrees per
point). Thus, highly accurate maps should provide valu-
able information when used as a basis for CONDORR-
type calculations.
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Appendix A: conservation of energy in CONDORR

Two point masses

Two “structureless” particles with masses m1 and m2
are located at coordinates r1 and r2. Define a particle
separation vector s�r1�r2 and a separation velocity
s_� r_1 � r_2. The interaction force F1 on particle 1 is equal
and opposite to the force F2 on particle 2, so the sub-
scripts for the force vectors can be dropped if a force
F�F1=�F2 is defined. For a pair of structureless particles,
the potential energy due to their interaction depends
solely on the interaction distance, so F is parallel to s. To
demonstrate conservation of energy, it is necessary and
sufficient to show that dH/dT=0, where H=T+U is the
classical Hamiltonian (T is the kinetic energy and U is the
potential energy).

The kinetic energy of the system is

T ¼
X
i¼1;2

Ti ¼
X
i¼1;2

mir_2i
2

According to Newton’s second law, F=ma, where F is
the force and a is the acceleration. The acceleration of
each particle is

ai ¼ r€i ¼
F
mi

The time-derivative of the kinetic energy is

dT

dt
¼
X
i¼1;2

d
dt

mi _r
2
i

2
¼
X
i¼1;2

mi

2
d _r2

i

d _ri

d _ri

dt
¼
X
i¼1;2

mi

2
2 _ri �

d _ri

dt

¼
X
i¼1;2

mi _ri
Fi

mi
¼
X
i¼1;2

_ri � Fi ¼ _r1 � _r2ð Þ � F ¼ _s � F

The time-derivative of the potential energy is

dU

dt
¼ dU

ds
ds
dt
¼ dU

ds
_s
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Conservation of energy requires that

dT

dt
¼ � dU

t

Then,
_s � F ¼ � dU

ds
� _s

F ¼ � dU

ds
¼ �rsU � � i

@U

@sx
þ j

@U

@sy
þ k

@U

@sz

� �

where rs is the gradient with respect to s, and i, j, and k
are unit vectors parallel to the x, y and z-axes. This sim-
ple, well established relationship is the basis for molec-
ular dynamics algorithms that are limited to the interac-
tion of “structureless” particles (i.e., point masses with no
angular momentum).

The interaction of an atom within a rigid residue
with an atom outside the residue

The residue is idealized as a sphere, with a mass m1, a
moment of intertia I, and a center of mass r1 (see Fig. 7).
Here, the external atom is treated as a point mass m2 at
coordinates r2. The kinetic energy of the system, in-
cluding that due to rotation of the residue is

T ¼
X
i¼1;2

Ti ¼
Iw2

2
þ
X
i¼1;2

mi _r
2
i

2

The angular acceleration of the residue is _w ¼ G=I,
where G is a torque. The time derivative of the kinetic
energy of the system can be expressed in a form analo-
gous to that given above for two point masses. That is, the
angular velocity w can be treated the same way that the
linear velocity ṙ was treated in the above derivation.

dT

dt
¼ d

dt

Iw2

2
þ
X
i¼1;2

d
dt

mi _r
2
i

2
¼ w � Gþ _r1 � _r2ð Þ � F

It is important to note that this equation defines F as
the force on the residue at its center of mass. (Conser-
vation of linear momentum requires that the force on the
external atom is -F.) Furthermore, the separation vector
s�r3�r2 is defined with reference to the two atoms rather
than the residue’s center of mass. Accounting for both
translation and rotation, the separation velocity of the
atoms is

_s ¼ _r3 � _r2 ¼ _r1 þ w� Rð Þ½ � � _r2

where R is the vector from the center of mass of the
residue to the interacting atom within the residue. The
time derivative of the potential energy is thus

dU

dt
¼ dU

ds
ds
dt
¼ dU

ds
� _s ¼ dU

ds
� _r1 � _r2 þ w� Rð Þ½ �

Conservation of energy requires that

dT

dt
¼ � dU

dt

_w � Gþ _r1 � _r2ð Þ � F ¼ � _r1 � _r2 þ w� R½ � � dU

ds
_w � Gþ _r1 � _r2ð Þ � F ¼ _r1 � _r2 þ w� R½ � � F

w � G ¼ w� R � F
w � G ¼ w � R� F

G ¼ R� F

where a substitution was made based on the assertion
(derived above) that � dU

ds ¼ F and where the triple scalar
product on the right hand side of the fourth equation was
replaced with an equivalent expression.

These equations show that conservation of energy for
the interaction of an external object with an atom within a
rigid residue requires two applications of the interaction
force F to the residue: (1) F must be applied to the residue
at its center of mass, affecting its linear momentum; (2) a
torque G=R�F must be applied to the residue, affecting its
angular momentum. The opposite force -F must also be
applied to the external object. It is not necessary to apply
any torque to the external object if it is a point mass.
However, if the external object is an atom within another
rigid residue, the second residue must be treated in ex-
actly the same way as the first, except that a force equal to
�F must be used.

This recipe also conserves both linear and angular
momentum. Conservation of linear momentum P is ex-
plicitly invoked in the derivation, as F�F1=�F2. Ac-
cordingly,

dP
dt
¼ d

t
m1r1 þ m2r2ð Þ ¼ m1

F1

m1
þ m2

F2

m2
¼ F1 þ F2 ¼ 0

The angular momentum L of the system depends on
the rotation of the residue (Lrot) and the relative motion of
the objects (Ltrans). That is,

L ¼ Lrot þ Ltrans

Conservation of angular momentum requires that

dL
dt
¼ dLrot

dt
þ dLtrans

t
¼ 0

By definition, the time derivative of Lrot is dLrot/dt=G.
The time derivative of Ltrans can be defined relative to the
center of mass c of the system, as illustrated in Fig. 8. The
center of mass c is

c ¼

P
a¼x;y;z

ua m1r1;a þ m2r2;a
� 	

m1 þ m2

Fig. 7 Geometry of the interaction of an atom within a rigid resi-
due with an atom outside the residue
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where ua are unit vectors along the x, y, and z-axes.
Define two vectors A1�r1�c and A2�r2�c, as shown in
Fig. 8. Substituting the expression for c into these defi-
nitions, expanding, and recollecting terms yields the fol-
lowing expressions.

A1 ¼
m2

m1 þ m2
r1 � r2ð Þ

A2 ¼
m1

m1 þ m2
r2 � r1ð Þ

Then, Ltrans can be expressed

Ltrans¼ m1 A1 � _r1ð Þ þ m2 A2 � _r2ð Þ

¼ m1m2

m1 þ m2
r1 � r2ð Þ � _r1 þ r2 � r1ð Þ � _r2½ �

¼ m Ar � _r2 � Ar � _r1½ �
¼ mAr � _r2 � _r1ð Þ
¼ mAr � _Ar

where a new vector Ar�r2�r1 has been defined and the
reduced mass m�m1m2/(m1+m2) have been substituted
into the expressions. The time-derivative of Ltrans is then

d
dt

Ltrans¼
d
dt

m Ar � _Ar

 �

¼ m
dAr

dt
� _Ar

� �
þ Ar �

d _Ar

dt

 !" #

¼ m _Ar � _Ar
� 	

þ Ar �
d _Ar

dt

 !" #

¼ m Ar �
d _Ar

dt

" #

¼ m Ar �
d
dt

_r2 � _r1ð Þ
� �

¼ m Ar �
F2

m2
� F1

m1

� �� �

¼ �m Ar �
m1F
m1m2

þ m2F
m1m2

� �� �

¼ �Ar � F

Here, the product rule was invoked, the cross product
of vector _Ar with itself was identified as zero, the vector
_Ar was expanded, the acceleration of each object was
expressed in terms of F=F1=–F2, and the reduced mass m
was cancelled. Appropriately, the expression for the time
derivative of angular momentum is independent of the
masses of the objects. Conservation of momentum re-
quires that

dL
dt
¼ dLtrans

dt
þ dLrot

dt
¼ 0

Substituting and recalling that G=R�F,

dLtrans

t
¼ � dLrot

dt
�Ar � F ¼ �G

Ar � F ¼ R� F

The angular momentum L is conserved only if F is
defined such that the last equation is true.

This can be shown geometrically with reference to
Fig. 9. The force vector F is always parallel to the line
(defined by s) passing through the two atoms. Another
line parallel to the line defined by s is drawn through the
center of mass of the spherical residue. The vectors F, R
and Ar are all in the plane defined by these two lines, so
the two cross products of interest are both normal to this
plane and thereby parallel. The length of each of these
cross products is equal to the distance d between the two
lines. That is,

R� Fj j ¼ Rj j Fj j sin q1 ¼ d

Ar � Fj j ¼ Arj j Fj j sin q2 ¼ d

As the two vectors of interest are parallel and have the
same length, they are equal, demonstrating that angular
momentum is conserved.

Evaluation of torsional potentials for the interaction
of two residues

The torsional angle j is specified by four atoms, located
at coordinates a1, a2, a3, and a4 (see Fig. 10). Atoms 1, 2,
and 3 are constituents of residue 1, whose center of mass
is at r1, and atom 4 is a constituent of residue 2, whose
center of mass is at r2. (Two copies of the third atom

Fig. 8 Geometry defining Ltrans relative to the center of mass of the
system

Fig. 9 Geometric representation of the conservation of angular
momentum

285



exist, as this atom is shared by the two residues. However,
coordinates of the atom 3 copy associated with residue 1
are used for calculating torsional angles and potentials.)
As illustrated in Fig. 10, it is possible to find a coordinate
transformation that results in a new system in which atom
2 is at the origin, atom 3 is on the z’-axis, and atom 4 is in
the x’,z’-plane. The coordinate system is chosen such that
the z’-coordinate of atom 3 and the x’-coordinate of atom
4 are both positive. Unit vectors parallel to the primed
axes can be calculated as follows. The vector A3=a3�a2 is
parallel to the z’-axis, so the unit vector uz ¼ A3= A3j j
defines the z’-axis. The vector A4=a4�a3 is in x’,z’-plane,
so the vector Ay=uz�A4 is parallel to the y’-axis and the
unit vector uy ¼ Ay= Ay

�� �� defines the y’-axis. The unit
vector ux=uy�uz defines the x’-axis. The vector Ap is
defined as the projection of A4 onto the x’-axis. Vectors
Ap and Ay have the same length l, which is

‘¼ Ap

�� �� ¼ ux � A4 ¼ uxj j A4j j cos qð Þ

¼ Ay

�� �� ¼ uz � A4j j ¼ uzj j A4j j sin
p
2
� q

� �

¼ uzj j A4j j cos qð Þ
where q is the angle between A4 and the x’-axis.

Define a fictitious atom f with coordinates af‚=a4. A
fictitious force F parallel to the y’-axis acting on atom f
(rigidly attached to residue 1) and the equal and opposite
force �F acting on atom 4 (rigidly attached to residue 2)
for a time dt will cause atom f and atom 4 (initially co-
incident) to become separated by a distance ds, changing
the dihedral angle j by an increment df ¼ ds

l . The po-

tential energy gradient dU/ds associated with the fictitious
force can be expressed in terms of the torsional potential
gradient dU/df:

dU

ds
¼ U

df
df
ds
¼ dU

df
1
l

The force F is parallel to uy, and has a magnitude of
�dU/ds. That is,

F ¼ � dU

ds
uy ¼ �

dU

df
1
l

uy ¼ �
dU

df
1

Ay

�� ��
Ay

Ay

�� ��

¼ � dU

df
Ay

Ay � Ay

where Ay=uz�A4, as defined above.
Fictitious forces calculated in this way can be treated

as interaction forces (described above) involving pairs of
atoms on different residues. (Fictitious atom f is associ-
ated with residue 1 and atom 4 is associated with residue
2.) Doing so preserves the total energy, linear momentum,
and angular momentum of the system.

Atomic interaction potentials

Atomic interaction potentials have the form:

V ¼ Qe
s
r

� �m
� s

r

� �nh i

where Q, s, m, and n are constants, �� is the potential at
its minimum value, and r is the distance between atoms.

Fig. 10 Geometric representa-
tion of the fictitious atom and
fictitious force used in CON-
DORR
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Define a distance rmin where the potential is minimized.
That is,V=Vmin=�� when r=rmin. Then,

V

dr
¼ Qe

d
dr

s
r

� �m
� s

r

� �nh i

¼ Qe �msm 1
r

� �mþ1

þ nsn 1
r

� �nþ1
" #

¼ Qe
r
�m

s
r

� �m
þ n

s
r

� �nh i

Define the ratio r=m/n and note that the derivative is
zero at the minimum,

dVmin

r
¼ Qe

rmin
�rn

s
rmin

� �rn

þ n
s

rmin

� �n� �
¼ 0

rn
s

rmin

� �rn

¼ n
s

rmin

� �n

s
rmin

� �ðr�1Þn
¼ 1

r

sðr�1Þn ¼ rðr�1Þn
min r�1

s ¼ rminr
�1
ðr�1Þn

Then,

V¼ Qe
s
r

� �rn
� s

r

� �nh i

¼ Qe r
�1
ðr�1Þn rmin

r

� �rn

� r
�1
ðr�1Þn rmin

r

� �n� �

¼ Qe r
�rn
ðr�1Þn

� �
rmin

r

� �rn
� r

�n
ðr�1Þn

� � rmin

r

� �n
� �

¼ Qe r
�r
r�1

� �
rmin

r

� �rn
� r

�1
r�1

� �
rmin

r

� �n
� �

Define � such that when r=rmin , then V=��, so

�e ¼ Qe r
�r
r�1

� �
rmin

rmin

� �rn

� r
�1
r�1

� �
rmin

rmin

� �n� �

�1
Q
¼ r

�r
r�1

� �
� r

�1
r�1

� �� �

Q ¼ � r
�r
r�1

� �
� r

�1
r�1

� �� ��1

The atomic interaction energies can be calculated by
substituting this value of Q into the general potential
expression derived above:

V¼ Qe r
�r
r�1

� �
rmin

r

� �rn
� r

�1
r�1

� �
rmin

r

� �n
� �

¼ e r
�r
r�1

� �
� r

�1
r�1

� �� ��1�
r
�r
r�1

� �
rmin

r

� �rn

� r
�1
r�1

� �
rmin

r

� �n
�

For example, for the familiar Lennard-Jones 6–12
potential, m=12, n=6, r=2, and Q=4. That is,

V6�12¼ 4e 2
�2
2�1

� � rmin

r

� �12
� 2

�1
2�1

� � rmin

r

� �6
� �

¼ 4e
1
4

rmin

r

� �12
� 1

2
rmin

r

� �6
� �

¼ e
rmin

r

� �12
� 2

rmin

r

� �6
� �

The force F due to a potential of this general type is

F¼ �dV

dr

¼ �Qe
d
dr

r
�r
r�1

� �
rmin

r

� �rn
� r

�1
r�1

� �
rmin

r

� �n
� �

¼ �Qe r
�r
r�1

� �
rrn

min

dr�rn

dr
þ Qe r

�1
r�1

� �
rn

min
dr�n

dr

¼ �Qe r
�r
r�1

� �
rrn

min �rnr�rn�1
� 	

þQe r
�1
r�1

� �
rn

min �nr�n�1
� 	

¼ �Qe r
�r
r�1

� �
rm

min �mr�m�1
� 	

þQe r
�1
r�1

� �
rn

min �nr�n�1
� 	

¼ Qem r
�r
r�1

� �
rm

minr�m�1 � Qen r
�1
r�1

� �
rn

minr�n�1

Defining the constants

AF ¼ Qem r
�r
r�1

� �
rm

minBF ¼ Qen r
�1
r�1

� �
rn

min

makes it possible to write a simple expression for the
force F:

F ¼ AFr�m�1 � BFr�n�1

Interpolation of potential surfaces and surface gradients

The energy surface UW1;W2

� 	
is approximated as a func-

tion of (W1, W2) at discrete points (wi,wj), arranged in a
square pattern, allowing the coordinates at each vertex to
be specified using only one index (i or j). Define an in-
verse distance h between the vertices,

h � 1
Dw
¼ 1

wiþ1 � wi
¼ 1

wjþ1 � wj

Define “edge gradients” sa,i,j along the lines connecting
adjacent vertices:

s1;i;j �
DU

Dwi

� �

i;j

� Uiþ1;j � Ui;j

wiþ1 � wi
¼ Uiþ1;j � Ui;j

� 	
h
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s2;i;j �
DU

Dwj

� �

i;j

� Ui;jþ1 � Ui;j

wjþ1 � wj
¼ Ui;jþ1 � Ui;j

� 	
h

For a specific point at coordinates (W1,W2) within the
square area bounded by points (wi,wj) and (wi+1,wj+1), the
gradient component @U=@W1ð Þ can be approximated by
calculating the values Urel

wi;W2
and Urel

wiþ1;W2
at coordinates

(wi,W2) and (wi+1,W2) relative to the value Ui,j and making
a linear extrapolation of U between these points. That is,

@U

@W1
�

Urel
wiþ1;W2

� Urel
wi;W2

Dwi

¼ s1;i;j � Dwi þ ðW2 � wjÞs2;iþ1;j � ðW2 � wjÞs2;i;j

Dwi

¼ s1;i;j

h
þ ðW2 � wjÞs2;iþ1;j � ðW2 � wjÞs2;i;j

� �
h

¼ s1;i;j þ ðW2 � wjÞðs2;iþ1;j � s2;i;jÞh
Similarly,

@U

@W2
�

Urel
W1;wjþ1

� Urel
W1;wj

Dwj
�

� s2;i;j

h
þ ðW1 � wiÞs1;i;jþ1 � ðW1 � wiÞs2;i;j

� �
h

¼ s2;i;j þ ðW1 � wiÞðs1;i;jþ1 � s1;i;jÞh
It is possible to define another parameter ai,j based on the
definition of sa,i,j:

ai;j � s1;i;jþ1 � s1;i;j
� 	

¼ s2;iþ1;j � s2;i;j
� 	

¼ Uiþ1;jþ1 � Ui;jþ1 � Uiþ1;j þ Ui;j

� 	
h

So that, in general,

@U

@Wa
� sa;i;j þ Wb � wb;c

� 	
ai;jh

where: if a=1, then b=2 and c=j; if a=2, then b=1 and c=i.
This is efficiently implemented by calculating the

values of variables in the following order:

i; j; s1;i;j; s2;i;j

and finally

ai;j ¼ �s1;i;jþ1 � s1;i;j ¼ Uiþ1;jþ1 � Ui;jþ1 � s1;i;j

This can be extended to a hypersurface describing the
potential U as a function of three variables. Define

s1;i;j;k �
DU

Dw

� �

i;j;k

� Uiþ1;j;k � Ui;j;k

wiþ1 � wi
¼ Uiþ1;j;k � Ui;j;k

� 	
h

The gradient components @U=@W1ð Þ and @U=@W2ð Þ
can be calculated in any plane defined by (W3=wk=
constant) as described above. Then, for the point at co-
ordinates (W1, W2, W3) within the cubic solid bounded by
points (wi,wj,wk) and (wi+1,wj+1,wk+1), one can trace the
changes in U from the point (wi,wj,wk) to the points (W1,
W2, Wk) and (W1, W2, Wk+1), making it possible to define

the interpolated values Urel
W1;W2;wk

� �
and Urel

W1;W2;wkþ1

� �

relative to the value (Ui,j,k). This makes it possible to find
a linear approximation for @U=@W3ð Þ solely in terms of
other, easily calculated gradient values. That is,

Urel
W1;W2;w3;k

¼ W2 � wj

� 	
s2;i;j;k þ W1 � wið Þ�

� s1;i;j;k þ W2 � wj

� 	
s2;iþ1;j;k � s2;i;j;k
� 	

h
� 	

Urel
W1;W2;w3;kþ1

¼ s3;i;j;k

h
þ W2 � wj

� 	
s2;i;j;kþ1

þ W1 � wið Þ s1;i;j;kþ1 þ W2 � wj

� 	
�

�

� s2;iþ1;j;kþ1 � s2;i;j;kþ1
� 	

hÞ
Alternatively,

Urel
F;Y;wk

¼ W1 � wið Þs1;i;j;k þ W2 � wj

� 	
�

� s2;i;j;k þ W1 � wið Þ s1;i;jþ1;k � s1;i;j;k
� 	

h
� 	

Urel
F;Y;wkþ1

¼ s3;i;j;k

h
þ W1 � wið Þs1;i;j;kþ1 þ W2 � wj

� 	
�

� s2;i;j;kþ1 þ W1 � wið Þ�
�

� s1;i;jþ1;kþ1 � s1;i;j;kþ1
� 	

hÞ
Then,

@U

@W3
¼ Urel

W1;W2;wkþ1
� Urel

W1;W2;wk

� �
h

¼ s3;i;j;k

h
þ W2 � wj

� 	
s2;i;j;kþ1 þ W1 � wið Þ�

�

� s1;i;j;kþ1 þ W2 � wj

� 	
s2;iþ1;j;kþ1 � s2;i;j;kþ1
� 	

h
� 	

Þh
� W2 � wj

� 	
s2;i;j;kþ W1 � wið Þ s1;i;j;kþ W2 � wj

� 	
�

��

� s2;iþ1;j;k � s2;i;j;k
� 	

hÞÞh
¼ W1 � w1;i
� 	

W2 � wj

� 	
�

� s2;iþ1;j;kþ1 � s2;i;j;kþ1 � s2;iþ1;j;k þ s2;i;j;k
� 	

h2

þ W2 � wj

� 	
s2;i;j;kþ1 � s2;i;j;k
� 	


þ W1 � wið Þ s1;i;j;kþ1 � s1;i;j;k
� 	

�hþ s3;i;j;k

Alternatively,

@U

@W3
¼ Urel

W1;W2;wkþ1
� Urel

W1;W2;wk

� �
h

¼ s3;i;j;k

h
þ W1 � wið Þs1;i;j;kþ1 þ W2 � wj

� 	
�

�

� s2;i;j;kþ1 þ W1 � wið Þ s1;i;jþ1;kþ1 � s1;i;j;kþ1
� 	

h
� 	

Þh
� W1 � wið Þs2;i;j;k þ W2 � wj

� 	
s2;i;j;k
��

þ W1 � wið Þ s1;i;jþ1;k � s1;i;j;k
� 	

hÞÞh
¼ W1 � wið Þ W2 � wj

� 	
s1;i;jþ1;kþ1 � s1;i;j;kþ1
�

�s1;i;jþ1;k þ s1;i;j;kÞh2

þ W2 � wj

� 	
s2;i;j;kþ1 � s2;i;j;k
� 	


þ W1 � wið Þ s1;i;j;kþ1 � s1;i;j;k
� 	

�hþ s3;i;j;k
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The two above expressions for @U=@W3ð Þ are equiv-
alent as

Uiþ1;jþ1;kþ1 � Ui;jþ1;kþ1
� 	

h� Uiþ1;j;kþ1 � Ui;j;kþ1
� 	

h

� Uiþ1;jþ1;k � Ui;jþ1;k
� 	

hþ Uiþ1;j;k � Ui;j;k

� 	
h

¼ s1;i;jþ1;kþ1 � s1;i;j;kþ1 � s1;i;jþ1;k þ s1;i;j;k
� 	

and

Uiþ1;jþ1;kþ1 � Uiþ1;j;kþ1
� 	

h� Ui;jþ1;kþ1 � Ui;j;kþ1
� 	

h

� Uiþ1;jþ1;k � Uiþ1;j;k
� 	

hþ Ui;jþ1;k � Ui;j;k

� 	
h

¼ s2;iþ1;j;kþ1 � s2;i;j;kþ1 � s2;iþ1;j;k þ s2;i;j;k
� 	

and it is clear that the last two expressions are identical
when stated in terms of U.

Permutation of the indices gives values for @U=@W1ð Þ
and @U=@W2ð Þ
@U

@W1
¼ W2 � wj

� 	
W3 � wkð Þ s2;iþ1;j;kþ1 � s2;iþ1;j;k

�

�s2;i;j;kþ1 þ s2;i;j;kÞh2 þ W2 � wj

� 	
s2;iþ1;j;k � s2;i;j;k
� 	


þ W3 � wkð Þ s3;iþ1;j;k � s3;i;j;k
� 	

�hþ s1;i;j;k

@U

@W2
¼ W1 � wið Þ W3 � wkð Þ s3;iþ1;jþ1;k � s3;i;jþ1;k

�

�s3;iþ1;j;k þ s3;i;j;kÞh2 þ W1 � wið Þ s1;i;jþ1;k � s1;i;j;k
� 	


þ W3 � wkð Þ s3;i;jþ1;k � s3;i;j;k
� 	

�hþ s2;i;j;k

Three of the six faces of the cubic solid bounded by
points (wi,wj,wk) and (wi+1,wj+1,wk+1) can each be asso-
ciated with a parameter aa,i,j,k, which is analogous to the
parameter ai,j defined for the two-dimensional case
above. That is,

a1;i;j;k � s2;i;j;kþ1 � s2;i;j;k
� 	

¼ s3;i;jþ1;k � s3;i;j;k
� 	

¼ Ui;jþ1;kþ1 � Ui;j;kþ1 � Ui;jþ1;k þ Ui;j;k

� 	
h

a2;i;j;k � s1;i;j;kþ1 � s1;i;j;k
� 	

¼ s3;iþ1;j;k � s3;i;j;k
� 	

¼ Uiþ1;j;kþ1 � Ui;j;kþ1 � Uiþ1;j;k þ Ui;j;k

� 	
h

a3;i;j;k � s1;i;jþ1;k � s1;i;j;k
� 	

¼ s2;iþ1;j;k � s2;i;j;k
� 	

¼ Uiþ1;jþ1;k � Ui;jþ1;k � Uiþ1;j;k þ Ui;j;k

� 	
h

Another parameter bi,j,k can be defined by extending
the definition of aa,i,j,k to include, for example, a1,i+1,j,k ,
which is associated with a cubic solid adjacent to the one
being considered. bi,j,k can be expressed in many different
ways, some of which may be more computationally
convenient:

bi;j;k ¼ s3;iþ1;jþ1;k � s3;i;jþ1;k � s3;iþ1;j;k þ s3;i;j;k

¼ a2;i;jþ1;k � a2;i;j;k ¼ a1;iþ1;j;k � a1;i;j;k

¼ s2;iþ1;j;kþ1 � s2;i;j;kþ1 � s2;iþ1;j;k þ s2;i;j;k

¼ a3;i;j;kþ1 � a3;i;j;k ¼ a1;iþ1;j;k � a1;i;j;k

¼ s1;i;jþ1;kþ1 � s1;i;jþ1;k � s1;i;j;kþ1 þ s1;i;j;k

¼ a2;i;jþ1;k � a2;i;j;k ¼ a3;i;j;kþ1 � a3;i;j;k

¼ Uiþ1;jþ1;kþ1�Ui;jþ1;kþ1
� 	

� Uiþ1;jþ1;k�Ui;jþ1;k
� 	

� Uiþ1;j;kþ1�Ui;j;kþ1
� 	

þ Uiþ1;j;k�Ui;j;k

� 	

¼ Uiþ1;jþ1;kþ1�Ui;jþ1;kþ1
� 	

� Uiþ1;jþ1;k�Ui;jþ1;k
� 	

�a2;i;j;k ¼ Uiþ1;jþ1;kþ1 � Ui;jþ1;kþ1 � Uiþ1;j;kþ1

�Uiþ1;jþ1;kþUiþ1;j;kþUi;jþ1;kþUi;j;kþ1�Ui;j;k

Then, the components of the gradient at coordinates
(W1, W2, W3) can be simply expressed as

@U

@W1
¼ W2 � wj

� 	
W3 � wkð Þbi;j;kh2 þ W2 � wj

� 	
a3;i;j;k




þ W3 � wkð Þa2;i;j;k�hþ s1;i;j;k

@U

@W2
¼ W1 � wið Þ W3 � wkð Þbi;j;kh2 þ W1 � wið Þa3;i;j;k




þ W3 � wkð Þa1;i;j;k�hþ s2;i;j;k

@U

@W3
¼ W1 � wið Þ W2 � wj

� 	
bi;j;kh2 þ W2 � wj

� 	
a1;i;j;k



þ W1 � wið Þa2;i;j;k�hþ s3;i;j;k
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